Chapter 8:
- Classes and Objects

Lecture outline

= anatomy of a class, continued
= constructors
= encapsulation

= preconditions, postconditions, and invariants

=3}

~_ Copyright 2006 by Pearson Education 2

—

I e O e

- reading: 8.4

s i —— i

| s
Copyright 2'006.by Pearson Education

Initializing objects

= It is tedious to construct an object and assign values to
all of its data fields one by one.

Point p = new Point();
p.X =3;
p.y = 8; // tedious

= We'd rather pass the fields' initial values as parameters:

Point p = new Point(3,8); I/ better!

= We were able to this with Java's built-in Point class.

=2)

-

- Copyright 2006 by Pearson Education

—

= constructor: Initializes the state of new objects.

= Constructor syntax:

public <type> (<parameter(s)>){
<statement(s)> ;

= A constructor runs when the client uses the new keyword.

= A constructor does not specify a return type;
it implicitly returns the new object being created.

» If @ class has no constructor, Java gives it a default constructor
with no parameters that sets all the object's fields to O.

—

~ Copyright 2006 by Pearson Education 5

—

Point class, version 3

public class Point {
Nt X;
Inty;

// Constructs a Point at the given x/y coordinates.
public Point(int initialX, int initialY) {

X = InitialX;
y = initial Y;
}
public void translate(int dx, int dy) {
X += dXx;
y +=dy;
}

=3}

" Copyright 2006 by Pearson Education

Tracing constructor calls

= What happens when the following call is made?
Point p1 = new Point(7, 2);

X y

public Point(int initialX, int initialY) {

X = initialX;
pl R y = initialY;

}

public void translate(int dx, int dy) {
X += dX;
y += dy;

}

m

=

___ Copyright 2006 by Pearson Education

—

Client code, version 3

public class PointMain3 {
public static void main(String[] args) {
/] create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.printin("plis (" + pl.x+", "+ ply +
System.out.printin("p2 is (" + p2.x+", " + p2.y +

// move p2 and then print it again
p2.translate(2, 4);
System.out.printin("p2is (" + p2.x+", " + p2.y +

}

OUTPUT:
plis (5, 2)
p2is (4, 3)
p2is (6, 7)

=3}

~_ Copyright 2006 by Pearson Education

—

~—
~—

")");

Client code question

= Recall our client program that produces this output:
plis (7, 2)
pl's distance from origin = 7.280109889280518
p2is (4, 3)
p2's distance from origin = 5.0
plis (18, 8)
p2is (5, 10)
distance from pl to p2 = 13.0

= Modify the program to use our new constructor.

=2)

-

- Copyright 2006 by Pearson Education 9

—

=3}

~_ Copyright 2006 by Pearson Education

—

Client code answer

I/l This client program uses the Point class.
public class PointMain {
public static void main(String[] args) {

I/ create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

I/ print each point
System.out.printin("plis ("+ pl.x+","+ply+
System.out.printin("p2 is (" + p2.x +", " + p2.y +

// compute/print each point's distance from the ori
System.out.printin("pl's distance from origin =" +
System.out.printin("p2's distance from origin =" +

// move pl and p2 and print them again
pl.translate(11, 6);

p2.translate(1, 7);

System.out.printin("plis ("+ pl.x+","+ply+
System.out.printin("p2is (" + p2.x +"," + p2.y +

I/l compute/print distance from p1l to p2
System.out.printin("distance from plto p2 ="+ pl.

")";
)");

gin

pl.distanceFromOrigin());
pl.distanceFromOrigin());

)"
)"

distance(p2));

10

| s
Copyright 2006 by Pearson Education

Encapsulation

= encapsulation:
Hiding implementation details of an object from clients.

= Encapsulation provides abstraction;
we can use objects without knowing how they work.
The object has:
= an external view (its behavior)
= an internal view (the state that accomplishes the behavior)

—3
™ 1 eme
T 3 Rg3
. 2%

qio _
gu 4’% 2 283394
AMP

40310
/ Mo oTRT i
— Lrda Measure-—"r

Registor Voltage .s':i
Here Here !

8g

gREEN
|

; Copyright 2006 by Pearson Education 12

—

Implementing encapsulation

= Fields can be declared private to indicate that no code
outside their own class can access or change them.
« Declaring a private field, general syntax:

private <type> <name> ;

= Examples:

private int x;
private String name,;

= Once fields are private, client code cannot access them:

PointMain.java:11: x has private access in Point
System.out.printin("plis (" + pl.x+", "+ ply + "");

N

—

~ Copyright 2006 by Pearson Education 13

—

Accessing encapsulated state

= We can provide methods to examine their values:

public int getX() {
return x;

}

= This gives clients read-only access to the object's fields.

= If so desired, we can also provide methods to change it:

public void setX(int newX) {
X = newxX;

}

= Client code will look more like this:
System.out.printin("pl is (" + pl.getX() +", "+ pl.getY() +")");
pl.setX(14);

—

; Copyright 2006 by Pearson Education 14

—

Accessors and mutators

Two common categories of instance methods used with
encapsulated objects:

= accessor: Provides information about an object.

= The information comes from (or is computed using) the fields.
= Examples: distanceFromOrigin , distance , getX

= mutator: Modifies an object's state.
= Sometimes the change is based on parameters (e.g. dx, dy).
« Examples: translate , setLocation , setY

—

= P

~ Copyright 2006 by Pearson Education 15

—

Benefits of encapsulation

= Provides abstraction between an object and its clients.

= Protects an object from unwanted access by clients.

« Example: If we write a program to manage users' bank
accounts, we don't want a malicious client program to be able
to arbitrarily change a BankAccount object's balance.

= Allows you to change the class implementation later.

= Example: The Point class could be rewritten

to use polar coordinates (a radius r and an angle ,
0 from the origin), but the external behavior

] (r,ﬂ)

and methods could remain the same.

" Copyright 2006 by Pearson Education 16

—

Point class, version 4

/I A Point object represents an (X, y) location.
public class Point {

private int Xx;

private int y;

public Point(int initialX, int initialY) {
X = initialX;
y = initialY;

}

public double distanceFromOrigin() {
\ return Math.sqrt(x *x +y *vy);

public int getX() {
\ return Xx;

public int getY() {
return y;

public void setLocation(int newX, int newY) {

X = newx;
y = newy;

}

public void translate(int dx, int dy) {
X += dX;

} y += dy;

v }

"7 Copyright 2006 by Pearson Education 17

Client code, version 4

public class PointMain4 {
public static void main(String[] args) {
Il create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

I/ print each point
System.out.printin("plis (" + pl.getX()
System.out.printin("p2 is (" + p2.getX()

// move p2 and then print it again
p2.translate(2, 4);
System.out.printin("p2 is (" + p2.getX()
}
}

OUTPUT:
plis (5, 2)
p2is (4, 3)
p2is (6, 7)

S . Copyright 2006 by Pearson Education

pl.getY()
p2.getY()

— —
~—

p2.getY()

I e O e

- reading: 8.6

s i —— i

| s
Copyright 2'006.by Pearson Education

Pre/postconditions

= precondition:
Something assumed to be true when a method is called.

= postcondition:
Something promised to be true when a method exits.

» Pre/postconditions are often documented as comments.

= Example:

I/ Sets this Point's location to be the given (X, y).
/[Precondition: newX >=0 && newY >=0
// Postcondition: x>=0&& y>=0
public void setLocation(int newX, int newyY) {
X = newxX;
Y = newy,

—

"7 Copyright 2006 by Pearson Education 20

—

Class invariants

= class invariant: An assertion about an object's state
that is true throughout the lifetime of the object.

Examples:
= '"No BankAccount object's balance can be negative."
= 'The speed of a SpaceShip object must be < 10."

= Let's add an invariant to the Point class:
= "No Point object's x and y coordinates can be negative."

To enforce this invariant, we must prevent clients from:
= constructing a Point object with a negative x or y value
= Mmoving a Point object to a negative (X, y) location

—

= P

~ Copyright 2006 by Pearson Education 21

—

Violated preconditions

= What if your precondition is not met?
= Sometimes the client passes an invalid value to your method.

= Example:

Point pt = new Point(5, 17);

Scanner console = new Scanner(System.in);
System.out.print("Type the coordinates: ");

Int X = console.nextint(); /' what if the user types
Int y = console.nextint(); /[a negative number?
pt.setLocation(x, y);

= How can we prevent the client from misusing our object?

—

; Copyright 2006 by Pearson Education 22

—

Dealing with violations

Ways to deal with violated preconditions:

= Return out of the method if negative values are found.
Drawbacks:
= It is not possible to do this in the constructor.

= The client doesn't expect this behavior.
« Fails "silently"; client doesn't realize something has gone wrong.

= Have the object throw an exception. (better)
= This will cause the client program to halt.

—

S Copyright 2006 by Pearson Education 23

—

Throwing exceptions

= Throwing an exception, general syntax:

throw new <exception type> ();
or throw new <exception type> (" <message>");

= <message> will be shown on console when program crashes.

= Example:

I/ Sets this Point's location to be the given (X, y).
// Throws an exception if newX or newY Is negative.
// Postcondition: x>=0&& y>=0
public void setLocation(int newX, int newyY) {
If (newX <0 || newY <O0){
throw new lllegalArgumentException();

}
X = newxX;
Yy = newy,

—

"7 Copyright 2006 by Pearson Education 24

—

Encapsulation and invariants

= Ensure that no Point is constructed with negative x or vy:

public Point(int initialX, int initialY) {
iIf (initialX < 0 || initialY < 0) {
throw new lllegalArgumentException();

}
X = InitialX;
y = initialY;

}
= Ensure that no Point can be moved to a negative x or y:

public void translate(int dx, int dy) {
f(X+dx<O0||ly+dy<0){
throw new lllegalArgumentException();
}

X += dx;
y +=dy;
}

—

= - Copyright 2006 by Pearson Education

—

25

